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Abstract

In this paper, simplified radiative transfer models and two-component simulations
are used to illustrate the effects of surface heterogeneity on remotely sensed land
parameters in the thermal infrared and microwave spectral regions, The regions
considered are 9-12 ~m in the infrared, and 3-24 cm in the microwave, The
simulations show that remote sensing observations over hmrogeneous  terrain yield
estimates of sensor-averaged, or “effective”, parameters that may be significantly
different from the area-averaged, or “composite”, parameters that are often assumed
to be estimated by the remote sensors. Differences as large as 0.4 ‘C in surface
temperature, 0,01-0.06 g cm-a in surface soil moisture, and 0.2-1.0 kg m-z in
vegetation water content, or larger, may be conlmon. These differences arise from
different sources in the infrared and microwave domains, but are a result in both cases
of the nonlinear radiative transfer relationshi})s  between surface parameters and
radiance received by the sensor. In the infrared case, for surface temperature, the
nonlinearity is caused by the Planck  function, In the microwave case, the nonlinearity
h caused primarily by the vegetation opacity, such that the effective surface
temperature, surface soil moisture, and vegetation water content always differ from
their composite counterparts when vegetation is present. q“<he magnitude of these
differences depends on wavelength, the nonlinearities  increasing in both infrared and
microwave regions as the wavelengths decrease. The differences also depend on the
relative fractional covers of the components and On their parameter contrasts, typically
being largest at intermediate values of fractio~lal  cover, In many situations, the
differences between effective and composite surface parameters may be small and can
be safe!y neglected. However, in some cases,~particular  in semiarid environments or
agricultural areas where large parameter contiasts exist between bare and vegetated
surfaces, unexpectedly large differences may occur that need to be addressed. The
use of visible and near-infrared sensing to obtain information on “within-pixel”
fractional vegetation cover should be considered in these cases.
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1 .  Introduction

Remote sensing observations, used in conjunction with in situ measurements, can

provide information of value in modeling and ~nonitoring  the biophysical  processes

governing balances of energy and water at the la]ld surface. <observations from space

are uniquely suited to studying the spatial and temporal variabilities of these processes

over a wide range of scales due to their wide-swath mapping and orbital sampling

capabilities. Knowledge of the fluxes of energy and water at the surface, the manner

in which these fluxes are affected by changing atlnospheric  and surface characteristics,

and the way they vary in different climatic reg,imes is important, since the fluxes

represent boundary conditions for dynamical models of atmospheric circulation and

water movement in t}~e soil (Ilougeault  (1991), I;arniglietti  et al. (1992)). The fluxes

are also important controlling influences in dynamical models of ecosystem

functioning and crop growth (Running (1 990), LoSeen et al. (1 995)).

A number of important issues must be addressed in the use of remote sensing

observations as inputs for the development and operation of these models.

Parameterizations of surface characteristics and fluxes must be matched to

parameterizations of radiative transfer. This requires formt]lation  of relationships

between the parameters of the biophysical  and observational models and methods to

interpolate their different space-time sampling. The sensitivities of the models to

their descriptive parameters must be assessed, so that assimilation methods may be

developed that are resistant to the effects of uncertainties and noise inherent in the

observational data, and in order to select optimal channel configurations and develop

retrieval methods for maximum information transfer. Remc)te  sensing observations

must be considered as an adjunct to, not as a replacement for, in situ data in such

studies.

In addressing linkages between surface fluxes and remote sensing observations,

most studies either assume spatial homogeneity (single component) within the remote

sensor footprint (pixel), or they assume that tile observations are related to area-

weighted averages of t}le surface parameters (“cc)mposite” parameters), in which the

weights are the fractional coverages of the differejlt  surface types. The implications of

these assumptions have not been adequately investigated. ‘l”hus,  studies using thermal

infrared sensing to retrieve surface temperatures (Wan and Dozier (1989), Becker and
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Li (1990), Sobrino et al. (1991), Kerr et al. (1 992), I’rata (1993), and Kealy and
Hook(l  993)), and t~ obtain surface fluxes (e.g. Kustas et al. (1 989), Holwill  and

Stewart (1 992)), have commonly assumed that surface temperature and emissivity are

constant within the observation pixel (-1 -km dimension from space). Similarly, in

studies of vegetation and soil moisture using passive microwave sensing, homogeneous

or area-weighted surface parameters are usually assumed within the footprint

(Choudhury et al. (1987), Owe et al. (1992)). However, land surfaces exhibit

significant heterogeneity at all spatial scales, and the coupling of radiation from

different surface components into the sensor receiving aperture, as expressed by the

radiative transfer and sensor reception equatiolls,  is nonlinear. Hence, unexpected

biases may occur in retrievals of surface parameters and fluxes using remotely sensed

data if these heterogeneities are not investigated and understood. In many cases these

biases may be negligible; in some they may be unacceptably large. Recent

investigations have begun to address these aspects and to quantify the extent of

naturally-occurring heterogeneity (Dozier (198 1), Caselles  and Sobrino (1989), Labed

and Stoll (1991), Becker and Li (1994), Humes ct al. (1994)).

In this paper we use a simplified approach to investigate the effects of surface

heterogeneity on thermal infrared and microwave remote sensing observations, and on

the pararneterizations by which they are linked to land sur~ace energy fluxes. Most

rough soil and vegetated surfaces impose a tht ee-dimensional  heterogeneity at the

land-atmosphere interface. However, for our pul-poses we shall consider only the two-

dirnensional  heterogeneity of the radiation field just above the soil or vegetation, thus

avoiding consideration of radiation interactions within the volume or cavities of the

surface. The discussion is somewhat idealized, but nevertheless can be used to

illustrate the magnitudes of the effects of interest. To illustrate the effects, a variety

of two-component surfaces are simulated with parameters ranging over extents typical

of some natural surfaces. The wavelength regions considered are 9-12 Lm in the

infrared, and 3-24 cm (1 0-1 .2s GHz) in the nlicrowave,  since these are the regions

most commonly used for thermal sensing of land parameters.

In Section 2 simplified surface energy and radiative transfer parameterizations are

presented as a context for describing how parameters derived from thermal remote

sensing data may be used in estimatit~g fluxes. In Section 3 the expressions for

remotely sensed “effective” parameters are presented and compared with the

expressions for composite temperature. ]n Section 4 simulations are performed using
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two-component surfaces to indicate the magnitudes of nonlinearities  potentially

introduced in parameter retrievals due to effects of heterogeneity. Section 5 contrasts

the expressions for remotely sensed effective ~)arameters with those developed to

represent large-area surface fluxes, and Section 6 })resents  the conclusions of the study.

2 .  Model  Parameter iza t ions

The two basic challenges to be addressed in assimilating remote sensing data into

hydrologic and atmospheric circulation models are: (1) defining appropriate

parameterizations  for linking the remote sensing and surface flux models so that the

remotely sensed data can provide information directly to the models of biophysical

processes in the soil and atmosphere; and (2) accounting for the differences in spatial

and temporal resolutions at which the remote sensing  measurements are made and at

which the models of processes in the soil and atmosphere operate, This is particularly

important in regions of strong surface heterogeneity, where high spatial and temporal

variability of surface fluxes occur, such ~s are often encountered in semiarid and some

agricultural environments. Such environments are important for study, since they

cover a large fraction of the globe, alld~~igni ficantla~proporlion  of the human

population depends on them for survival. Adverse climate change or surface

degradation in these regions can have critical i]npacts  on food and water supplies.

Errors in remote sensing and flux modeling caused by ignoring the effects of surface

heterogeneity are largest in these regions.

The focus of this paper is to illustrate  the effects of heterogeneity primarily from a

remote sensing viewpoint, thus the issue of deterlnining  appropriate parameterizations

for aggregating surface fluxes over heterogeneous terrain is not addressed here (see for

example Chehbouni et al. (199s)). However, the basic expressions for surface energy

fluxes are provided below as a starting point to illustrate the manner in which remote

sensing parameterizations are related to parameterizations of surface fluxes,

2.1 Surface Flux Parameterizations

A useful summary of surface flux parametrization schemes applicable to climate

and hydrologic modeling is provided by Rowntree (1991). The energy flux

boundary conditions are expressed by the surface energy balance equation:

Rn=H+-LE  +<; (1)



where, Rn is the net downward radiation flux at ~he surface, H and LE are the upward

sensible and latent heat surface fluxes, respectively, (the latent heat flux I,E is the

product of the evaporative moisture flux E and dle latent heat of vaporization L), and

G is the downward heat flux into the soil. Units are in W m-z.

Assuming a homogeneous,

used to describe the energy fluxes

single interface, the following expressions may be

(Brutsaert (1 984), Rowntree (1991)):

R,, =(l-cx)  &+&( Rl-cs  T,4) (2)

(3)

(4)

(5)

In these expressions, RS and RI are, respectively, the downward shortwave (solar) and

longwave (thermal atmospheric) radiation at the surface, (X and & are the (broadband)

shorlwave albedo  and longwave emissivity, respectively, (corresponding to RS and RI),

and cs is the Stefan-Boltzn~ann  constant. p and Cp are tl~e air density and specific

heat at constant pressure, respectively, Ts is the surface temperature, Ta and ea are the

temperature and vapor pressure of the air, respectively, at a reference height z above

the surface, and ra is the atmospheric (or “aerodynamic”) resistance to transfer from

the surface (soil or vegetation) to the atmosphere, defined with respect to height z. ‘Y

is the psych rosnetric  constant, e*(Ts) is the saturated vapor pressure at temperature Ts,

rs is the surface resistance to transfer from the soil (or the stomatal  resistance in the

case of vegetation), kg is the soil conductivity, and T(z) is the soil temperature profile

(z positive upwards).

In Eqs. 2-5 the surface temperature “rs appears explicitly as a parameter. However,

for many vegetated and heterogeneous surfaces it is difficult to define this

temperature precisely. If the remotely sensed infrared (or “radiative”) skin surface

temperature is used for T~ then the definition of ra must be adjusted accordingly by

including a supplementary resistance to heat transfer (Prevot et al, (1994)). Since the

microwave-derived surface temperature represents a deeper layer in the surface

5



(Njoku (1995)), a different modification to the resistance definition may be necessary

in this case. \

Soil moisture enters into the flux equations less explicitly, either in simplified

expressions for the latent heat flux, or in more detailed treatments through

expressions for the surface resistance r~. According to the surface cover type and

environmental conditions, the surface resistance includes dependence on atmospheric

water vapor deficit, surface soil moisture, and water availability in the root zone.

Various parameterizations of the surface resistance, involving soil moisture in the

shallow surface layer and in the deeper root zone layer, have appeared in the literature

(Rowntree  (1991), Bougeault (1991). Microwave remote sensing can provide

information directly on soil moisture in the surface layer (-1 cm). For bare soils,

moisture in the deeper layers may be obtained indirectly from the surface soil

moisture by combining surface measurements with a soil heat and moisture flux

model (Entekhabi  et al. (]994)). For vegetated soils, there does not appear to be a

straightforward relationship between vegetation water content, as measured by a

microwave radiometer, and soil moisture in the root zone. }Iowever,  the vegetation

water content may be a useful parameter in helping specify the fractional vegetation

cover, and for monitoring vegetation growth, in climate and ecosystem models.

2.2 Radiative Transfer Parameterizations

The thermal spectral radiance from the Ear[h, l~o,  as observed by a spaceborne

sensor at infrared or microwave wavelengths, can be expressed as:

(6)

where, the subscript k is the wavelength and refers to spectral quantities. Ila is the

upwel]ing  atmospheric radiance, q is the atmospheric opacity, and &z is the surface

emissivity, (all directional quantities in the viewi)]g  direction of the sensor). 114 is the

downwelling  atmospheric radiance (assumed isotropic for simplicity), and BL(T,) is

the blackbody  radiance at surface temperature T~. (The term exp(-zx) is ofien written

as the “transmittance”, particularly in infrared sensing. However it is written here in

terms of “opacity” for consistency with usage elsewhere in microwave modeling), Eq.

6 is valid for a non-scattering atmosphere (aerosol- and cloud-free), and assumes

azimuthal isotropy. (Dependence on 6, the zenith viewing angle, is understood).

Ideally the expression should be integrated ovet the detector bandwidth centered at
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wavelength k, but this effect is small and will be ignored in this analysis. The Planck

function, Ill(T’), is giten  by the expression:

Bl(T) = — — - - — c ] —  —
n15 [exp( cVEl”  ) - 1]

(7)

where, Cl = 2nhc2  ( = 3.74183 x 10-16 W n~-2) and CZ = hclk ( = 1.43879  x 10-2 m

K) are radiation constants, (h and k are Planck’s and Boltzmann’s constants,

respectively, and c is the speed of light), X and T are in units of m and K, respectively,

and BL(T) is in units of W m-z m-l sr-l (Goody and Yung (1989)).

The spectral, directional emissivity, El, is not the same as the emissivity &

appearing in Eq. 2, which is equivalent to El integrated over the upper hemispherical

solid angle, and over the broad thermal infrared spectral region. However, these

quantities are often assumed to be the same, and for some surfaces the difference is

indeed small. However, insufficient data exists to characterize this fully for many

naturally occuring surfaces. Measurements of infrared emissivity have been reported

in the literature both using laboratory samples and in natural environments (SalisbuV

and D’Aria (1992), Hipps (1989), van de (lriend  et a!. (1991),  and Labed and Stoll

(199 ])). (The laboratory measurements are usually done in reflectance and have to be

converted to emissivity,  and the field measurements must be corrected for stray

radiation artifacts. Thus, both procedures contain some measurement uncertainties.)

Typical values range from about 0.9-0.96 for bat e soils to abcnst 0.985 for vegetation

in the 9-12 pm waveband.

In the microwave region, the emissivity of bare soil, cl~, decreases approximately

linearly as a function of the soil water content, m, in the top 1-2 cm of soil, i.e.:

%s =%o+% (m-%); (m 2 mo) (8)

where, Cko and m. are the emissivity  and moisture content of dry soil, respectively,

and ax is the slope of the emissivity-soil  moisture relationship (ax takes negative
values). &iO and a~ are functions of wavelength, known by measurement and through

their dependence on the dielectric constant of water, and depend also on the

polarization of the radiation (vertical or horizontal). A more complete description of

the relationships between soil moisture, dielectric constant, and emissivity, for smooth

and rough surfaces, and soils of different textures, is given in Njoku and Entekhabi

(1995). Eq. 8, though approximate, suffices for our purpose here. Representative
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values for mo, E.lo, and al in the wavelength range 3-30 crn are available from

3.

measurements report?ed  in the literature. In this study we shall use the following

values, typical of a smooth, sandy loam soil, at horizontal polarization, and 20° zenith
viewing angle (Wang et al. (1983)): m. = 0.0S g cm-s, ELO = 0,87,  and az == -1.5 g-l

ems. The emissivity can be seen to range, under these assumptions, from a high of

approximately 0.87 for a dry soil, to a low of less than 0.S for a wet soil (m = 0.3 g

cm-s).

When vegetation is present, it may be modeled at long microwave wavelengths as

a uniform, non-scattering layer above the soil. Assuming that the soil is at the same

temperature as the overlying canopy, the emissivity  of the vegetation-plus-soil
medium, Clc, may be expressed as:

Ekc = 1- exp(-~~) [ 1- %S 1 (9)

where, Tk is the canopy opacity, which depends linearly on the vegetation water

content WC (kg m-z):

‘k = bWC/cosO ( lo)

“Ile dependence of the coefficient b on wavelength and vegetation type is subject to

some uncertainty. However, measurements indicate that h varies approximately

inversely with wavelength, and is not high]y dependent on vegetation type. A value of

b = 0.1 kg-l mz at L = 20 cm is typical (Jackson and Schmtrxge (1 991)). Eqs. 9 and

10 show that the presence of vegetat ion above tile soil increases the surface emissivity

from the value for bare soil  to a value of -1 when the vegetation is very dense. (The

single scattering albedo of the vegetation reduces this sligh[ly, but is ignored here

(Kerr and Wigneron (1995)). Values of WC range typically from approximately 0.5

kg m-z for grass to 5.o kg m-z for dense crops and >10 kg m-z for forests.

Remotely Sensed  EfFective  Parameters

Effective parameters have been proposed as a means for applying equations

developed for homogeneous or point-scale processes to processes occuring  at larger

spatial scales over heterogeneous surfaces. Thus, for example, Shttttleworth  (1991),

Chehbouni et al. (1995), and others have studied the use of effective parameters in

representing energy flux processes over hetero{:eneous  surfaces, One method for

deriving expressions for the effective F)arametcrs is to explcss the energy balance
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equation separately in terms of effective and component surface parameters, and then

to match the expressions term by term using some initial assumption about which

fluxes will be “conserved” in going from the small to the large scale. The assumptions

of which fluxes or parameters are conserved, and uncertainties as to whether the forms

of the bulk  parameterization equations remain valid at large scales over heterogeneous

terrain, lead to some ambiguity in interpreting such effective parameters. However,

much insight can be obtained by this method  into the effects of aggregating nonlinear

processes to larger scales.

A sjmilar  aggregation procedure can be used in applying the radiative transfer

equation over large scales, In this case the situation is more clearcut  since radiometer

receiver theory defines how the radiatiol;  from a heterogeneous surface is aggregated

as it is measured by the radiometer. This has recently been discussed by Becker and

Li (1 994). Following this approach, the observed radiance from a heterogeneous
surface is expressed as the solid angle weighted average, ~AO, of the radiance from each

of the N components of the surface within the observed pixel or footprint:

(11)

where, ~i = (dQi/Q)  is the fractional cover of component i, dQi is the solid angle

subtended by component i at the sensor, Q is the solid angle subtended by the entire
N.

pixel at the sensor, and the fractional covers satisfy the constraint: ECi = 1. l~i are
i=]

the radiance components at the horizontal two-dimensional plane just above the

surface (thus avoiding consideration of radiation interactions within the cavities of the

rough or vegetated surface). Strictly speaking, the expression for the weights &i

should include the effects of the sensor angular reception characteristics (i.e. the

antenna pattern for a microwave radiometer). However this additional effect is

ignored here, and it is assumed that the weights can be computed directly from the

horizontal spatial areas of the surface components and pixels in the two-dimensional

horizontal plane, and the zenith viewing angle. A~Jplying  Eq. 11 to Eq. 6 we obtain:

(12)

where it is assumed that the atmosphere is homo~eneous  over the pixel.



I
The radiance observations ~ti are normally used in remote sensing retrieval

algorithms to estima~e  the sensor-averaged or “effective” elnissivity and temperature
over t!]e pixel, FL an d ~,, using an expression equivalent to F/q. 6, i.e:

Thus, from a remote sensing retrieval point of view, the following relationships

between component and effective parameters arc defined by matching terms in Eqs.

12 and ]3:

and,

or, equivalently, using Eq. 7:

(16)

In the microwave region of the spectrum, and for temperatures characteristic of

Earth radiation, the Rayleigh-Jeans  approximation ( hc << Ml” ) is valid, so that for a

given wavelength the blackbody  radiance is linear in temperature. In this case, Eq. 16

takes the simpler form:

In the microwave region, we can take the analysis of emissivity a step further by

combining Eqs. 8-10 to get:

& A = l - (18)exp[-bWC/cosO]  [1 - czO - a*(m - n~O)]

and thus, using Eq. 14:
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N N

El == 1 -[1 -ekO+  a~wlo ]  ~ {iexp[-bWCi/cose]  +aL~ ginliexp[-bWCilcosf3]  (19)
i=l i=l

The modeled sources of heterogeneity in this case are the soil moisture and vegetation

water content. Other sources of heterogeneity such as soil texture, surface roughness,

and vegetation type also play a role, but their effects are considered secondary here.

From Eqs. 18 (treating the parameters as effective parameters) and 19, and matching

terms as before, we find:

(20)

and,

N

DJ i n~i exp[-bWci/cosO]

iii. i=l ..—— ———— (21)
exp[-bWC/cos6]

Eqs. 14, 16, 17, 20, and 21 are the derived expressions for remotely sensed

effective parameters. It can be seen that only in the case of emissivity are the effective

parameters simple averages of the component parameters weighted by their fractional

coverage areas as is often assumed. Except for emissivity,  the weights are also
functions of wavelength. l“his means tl~at  for Inultichannel  retrieval algorithms, the

weights for tfle retrieved effective parameters will be a combination of those at each

wavelength. Furthermore, since microwave sensors often have different footprint sizes

at different wavelengths, the type and magnitude of surface heterogeneity observed at

each wavelength may be different. Also, in a more detailed analysis, the effects of

heterogeneity should be evaluated in the contexl  of atmospheric and

that the manner in which these influence the effects of heterogeneity

may be assessed.

In the simulations of the next section, we restrict the discussion to

surfaces (i.e. N = 2), and allow the characteristics of the component

sensor noise, so

in the retrievals

two-component

surfaces to vary

over realistic ranges. No constraints are provided on t}]e independent variability of

the surface parameters or on the juxtaposition of surface types as might be desired in a

more realistic simulation. (However, the combitlations  of surface types used are quite

representative of natural conditions.)

t}le nonlinear effects of heterogeneity,

I’he intel)t is to investigate the magnitudes of

and to place bounds on these effects. It is of
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most interest to examine the differences between the effective parameters~,  (where~

may represent El, ~;, ~c, or =), and those which would be obtained if an area-

weighted average were applied - referred to as “composite” parameters. We therefore

define composite parameters, ~“, by the expression:

i. 1

and examine, via simulation, t}~e  difference quantities:

4 0 S i m u l a t i o n s

4.1 “temperature and Emissivity

The simulated surface pixel is considered to be made up
fractional surface areas {1 and {2 (= l-~1), at temperaturtx

(22)

(23)

of two components, of
TS] and T~2, and with

emissivities  El] and &z2, respectively. The fractional cover ~] is varied from O to 1,

and the emissivities are either considered uniforln  or are assifined specific values. In

the infrared, the assigned values are ELI = 0.985 (typical of vegetation) and &12 = 0.93

(typical of bare soil) (Hipps (1989), van de Gritnd  et al. (1 991). In the microwave,

the emissivities are computed for specific values of soil moisture and vegetation water
content. The temperature T~ ~ is fixed at 300 K, while T~2 is varied from 280-320 K

such that the difference AT~l,2 = (T~2 - T~l)  varies * 20 ‘C. The positive range (up to

+2o ‘C) is typical of peak daytime temperature contrasts between bare and vegetated

soil in semiarid environments (Humes  et al. (1994)), while the negative temperature

extreme (up to -2o ‘C) is somewhat high for peak nighttime conditions but is

included for the sake of illustration. The two components may be considered as

separate and spatially distinct, with a single boundary between them, or as mixed,

such as with patchy grasses or clumps of shrubs or trees.

The aggregation formula for emissivities  (Eq.  14) is a simple area-weighting, hence

the effective emissivity  is

AK1 = EL - El* is zero.

straightforward. Below,

effect ive temperature,

the same as the composite emissivity,  i.e. the difference

The interpretation of effective emissivity  is therefore

we focus mainly on interpreting the formulations for

12



(a)

(b)

Injiared:
h

Eq. 16 is the aggregation formula for remotely sensed infrared effective surface

temperature. Due to the nonlinearity of the Planck  function, the infrared effective—. —
temperature differs from the composite temperature, i.e. AT~ = ~~ - T~* # O. For

the uniform ernissivity  case (i.e. EL1 = &L2), Figures 1 (a) and 1 (b) show the

dependence of A~~ on the temperature contrast AT~l ,2. The cllrves are shown for two

different wavelengths, 12 ~m and 9 pm, with fractional cover as a parameter. It is
—

seen that AT~ is always positive, i.e. the effective temperature is always greater than

the composite temperature, and increases with magnitude of the component

temperature contrast (the nonlinearity of the Planck  function always biases the

effective temperature towards the higher temperature component). A~S is largest for

fractional cover ~1 near 0.5, and decreases to zero as expected for ~1 = O or 1,

representing a homogeneous surface. This can be seen more clearly by plotting the

curves versus fractional cover as in Figure 1 (c). ‘rhe effects are not symmetrical with
AT,, ~, or with El. The maximum value of A~;~ for the ranges shown is about 0.4 ‘C

at 12 ym and 0.6 ‘C at 9 ~~n~. ~“’he maximum value increases towards shorter

wavelengths, arid has a value of 1.7 ‘C in the 4 ~!n atmospheric window (not shown).

Figure I (d) shows the situation when the two com}lonents  have different

ernissivities. The lower emissivity  of tile simulated bare soil (component 2) has a—
compensatory effect for the bias towards its higl)er  temperature- hence AT~ is lower
for positive AT~l ~ than in Figure 1 (a). q’he co~lverse  is true for negative AT,I,2. In

—
addition, AT~ takes negative values over a portion of the range.

An implication of these results is that differences can be expected between

remotely sensed (effective) surface temperatures and composite surface temperatures

(such as used for validation purposes or as an assumptic)n for remotely sensed surface

temperatures in flux models). In the 1o-12 ~nl region,  and for  naturally-occuring

combinations of temperature and emissivity, three differences may range from a few

to several tenths ‘C— the specific values will depend also on the details of the

multichannel algorithm used to retrieve the effective temperatures. One should

consider carefully, therefore, the combinations of surface and observational conditions

described here that give rise to the larger biases, especially at shorter wavelengths.

Microwave:
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For uniform emissivity, in the microwave case, Eq. 17 reduces to simple area-

weighting. ThLN, thd microwave effective and composite surface temperatures are the
— —

same, and AT~ = ~~ - TS* = O.

In order to describe, somewhat realistically, the effects of nonuniform microwave

emissivity, four cases of two-component surface types are considered as listed in Table

1. For each case, surface soil moisture and vegetation water content values are

specified for each component, and corresponding emissivities  are computed using

Eqs. 8-10, assuming horizontal polarization and 20° zenith viewing angle, for

wavelengths 24, 12, 6, and 3 cm. These wavelellgths  correspond to frequencies 1.25,

2.5, 5, and 10 GHz, which fall within the designated L, S, C, and X microwave wave-

bands. The m and WC parameter contrasts between components 1 and 2 have been

chosen to be reasonably realistic, and extreme cases have not been considered.

Figure 2 shows the dependence of A;rs on telnperature  contrast AT,l,2 for each of

the four cases. The curves in Figure 2(a) (Case 1) are plotted for different values of

fractional cover ~1, (there is no modeled wavelength dependence in this case), while in

Figures 2(b)-(d) (Cases 2-4) they are plotted for different wavelengths using a fixed

value of~l = .5. As before, the differences A~xS are largest for fractional cover EI s .5.

The differences can take positive or negative values. The d iffercnces  are positive when
AT, I ~ is positive and the emissivity in component 2 is greater than that in component

1 (as ‘expected from the form of Eq. 17). For a given temperatllre  contrast AT~1,2, the

difference AT, is largest when the emissivity contrast is grea(est. This can occur at

different wavelengths depending on the surface types. I-heterogeneous surfaces

containing wet, bare soil and dense vegetation exhibit the largesl emissivity contrasts
and hence differences, A~~. (The portions of the temperature contrast range, AT~1,2  =

*2o ‘C, that are realistic to consider depend on the component surface types. No
attempt is made here to limit the AT~1,2 values to realistic ranges for each c~d

Figure 3 shows the difference between effective and composite vegetation water

contents, A@c, based on Eqs. 20 and 22. The difference is always negative,

indicating that the mean (area-averaged) vegetation water content over a

heterogeneous footprint is underestimated in the microwave retrieval. The

underestimation is greater for greater vegetation water contrasts, and for shorter

wavelengths, at which the nonlinear effects of vegetation on microwave brightness

temperature are

cover, but there

greater. The effect is greatest at intermediate values of fractional

is increasing asymmetry as a function of fractional cover at shorter
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wavelengths, biasing the occurence  of the maximum difference towards smaller values

of fractional cover of’the lower-vegetation component.

Figure 4 shows the difference between effective and composite surface soil

moisture contents, Am, based on Eqs. 21 and 22. In figures 4(a) and 4(b) the

difference is shown as a function of fractional cover El for values of moisture ml = 0.1
g cm-s and n12 = 0.2 g cm-s in components 1 and 2 respectively, i.e. a value of Am ~,2

= 0.1 g cm-s. Component 1 is bare soil, and the different curves correspond to
increasing amounts of vegetation in component 2. The difference is quite small at 24-

cm wavelength but increases to large values at shorter wavelengths. The difference is
shown in Figures 4(c) and (d) as a function of moisture contrast, Aml,2, for fractional

cover~l = .5.

5. h-face FILtx Effective Parameters

We may contrast the expressions obtained in Section 3 with those derived for

effective parameters applicable to flux modeling. One set of these, as derived by

Chehbouni et al. (I 99s), are:

“ k“& . --L
w L Wi

i=l
(26)

(27)

where, C, ra, and r~, were defined in Section 2.I, and w is a function of ra and r~ and

other surface parameters. We may note that while the expressions for effective

emissivity  (Eqs. 14 and 24) are the same, tile expressions for effective surface

temperature (Eqs. 16 or 17 and 25) are not. Chehbouni et al. show that the difference

between effective temperature defined by Eq. 25 and composite temperature can

range, for typical two-component surface contrasts, from approximately -4 to 1 ‘C.

Future work should explore further the relationships between effective parameters

15



6.

defrned by remote sensing and those defined

conditions, in ordert~  improvet he applicability

stud ies.

Conclus ions

by flux aggregation, under realistic

of remote sensing data to surface flux

In this paper, simplified radiative transfer models and two-component simulations

have been used to show the effects of surface heterogeneity within the observation

footprint on remotely sensed parameters in ttle thermal infrared and microwave

spectral regions. The simulations have shown that remote sensing observations of

heterogeneous terrain yield estimates of sensor-averaged, or “effective”, parameters

that may be significantly different from the silnple  area-averaged, or “composite”,

parameters that are often assumed to be estimated by the remote sensors. These

differences arise from different sources in the infrared and microwave domains, but

are a result in both cases of the nonlinear radiative transfer relationships between

surface parameters and radiance received by die sensor. In the infrared case, for

surface temperature sensing, the nonlinearity is caused by the Planck  function. In the

microwave case the nonlinearity is caused primarily by the vegetation opacity, such

that the effective surface temperature, surface soil moisture, and vegetation water

content always differ from their composite coul~terparts  when vegetation is present.

“I%e magnitude of these differences depends on wavelength, the nonlinearities

increasing in both infrared and microwave regions as the wavelengths decrease. The

differences also depend on the relative fractional covers of the components and on

their parameter contrasts, typically being largest at intermediate values of fractional

cover. In many situations, the differences between effective and composite surface

parameters may be small and can be safely neglected. However, in some cases,

particular in semiarid environments or agricultural areas where large parameter

contrasts exist between bare and vegetated surfaces, unexpectedly large differences

may occur that need to be addressed.

The results obtained here use a simplified approach, and do not take into account

the details of specific multichannel parameter retrieval algorithms or other practical

issues such as variable instrument bandwidths, antenna beamwidths,  atmospheric and

instrument noise, multicomponent  (more than two) footprints, and other factors.

These should be the subject of further study. ‘1 ‘he results are indicative, however, of

the magnitudes of nonlinear effects to be anticipated in estimating land surface

16



parameters over heterogeneous terrain. The results may also lead to further insights

into the use of visible? and near-infrared (VNIR) remote sensing data, in combination

widl thermal infrared and microwave data, for estimating and monitoring surface

fluxes. The VNIR data may provide information on vegetation fractional cover

within the thermal infrared and microwave footprints, thus providing a means to

correct for nonlinearities  in the remotely sensed effective temperature, and to relate

the remotely sensed effective temperature more closely to the effective temperature

appropriate for large-area flux models.
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Tables

Table I: Simulated two-component surfaces fir analysis of effects of nlicrowave-

derived effective parameters. (W. is vegetation water content in kg m-z; m is surface

soil moisture in g cm-s; e~ is modeled emissivity, where Z is wavelength in cm)

_- —._ —— —..

Case # Component Description WC m ~~~ ~~~ EL &3
—-— __ ———. ..__— ——

1 1 Moist soil O .1 .795 .795 .795 .795
2 Dry soil o .05 .870 .870 .870 .870

2 1 Grass .5 .1 .804 .812 .828 .856
2 Dry soil o .05 .870 .870 .870 .870

3 1 Crops 2 .1 .828 ,856 .899 .950
2 Dry soil o .05 .870 .870 .870 .870

4 ) Crops 2 .2 .703 .751 .825 .914
2 Wet soil o .15 .720 .720 .720 .720

-—.——-.—. ———. .-—_.-— .—. —

21



Figures

Figure 1.
Difference AT, (°C), at infrared wavelengths, between effective (remotely sensed)
and composite surface temperatures for a two-component surface: (a) as a function of
temperature contrast AT~l z between the two components, for uniform emissivity and
a wavelength of 12 ~m--- -c’urves  are shown for different values of fractional cover ~1 of
component I; (b) same as (a), but for a wavelength of 9 ~m; (c) same as (a), but
shown as a function of fractional cover ~1, with temperature contrast AT~l,2  as a
parameter; (d) same as (a), but for components with different emissivities--  &ll =
0.985 (typical of vegetation) and e12 = 0.93 (typical of bare soil).

Figure 2.
L>ifference  A~S (°C), at microwave wavelengths, between effective (remotely sensed)
and composite surface temperatures for a two-component surface, displayed as a
function of temperature contrast AT, ] ~ between components. The ernissivity
contrasts between components for each c’ase are given in Table 1, Values shown are
for horizontal polarization at a zenith viewing angle of 20

0. (a) Case I: shown for
different values of fractional cover ~ 1 of component 1. (b) Case 2: shown for
different wavelengths and for fractional cover ~1 = 0.5. (c) Case 3: shown as in (b).
(d) Case 4: shown as in (b).

Figure 3.
Difference A~C (kg m-z), at microwave wavelengths, between effective (remotely
sensed) and composite vegetation water contents for a two-component surface: (a) as
a function of fractional cover cl, with vegetatioll  water content contrast AWC1,2 as a
parameter, at a wavelength of 24 cm; (b) same as (a) but for a wavelength of 3 cm;
(c) as a function of vegetation water content contrast  AWCI,2, with wavelength as a
parameter, and fractional cover ~1 = 0.5.

Figure 4.
Difference AR (g cm-s), at microwave wavelengths, between effective (remotely
sensed) and composite surface soil moisture corltents  for a two-component surface:
(a) as a function of fractional cover {1, for soil moisture contrast Am1,2 = 0.1 g cm-s,

with vegetation water content contrast AWCI,2 as a parameter, and a wavelength of 24
cm; (b) same as (a) but for a wavelength of 3 cm; (c) as a function of soil moisture
contrast Am ~ z, with vegetation water content contras~  AWC1,2 as a parameter, for
fractional co~er ~1 = 0.s, and a wavelength of 24 cm; (d) same as (c) but for a
wavelength of 3 cm.
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